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Abstract

This paper provides theoretical underpinnings for nonconstant rate discounting proce-
dures. We begin by distinguishing the concepts of amount and speed of discounting. Expo-
nential discounting — discounting at a constant rate - sequesters both concepts into a single
parameter that needs to be disaggregated in order to adequately characterize nonconstant
rate procedures. The present value accorded to a unit stream of net outcomes — a stream
of flow value 1 from time zero to infinity — corresponds intuitively to the total weight that
a discounting procedure assigns to the future. The inverse of the weight provides a natural
measure of the emount that the procedure discounts away the future. Time-paths for the
accumulation of present value can differ for procedures that discount the future by the same
amount. We propose a measure for the speed of discounting that reflects these differences.
With speed defined we are able to show exponential discounting to be the fastest procedure
possible for nonincreasing discount rates and the slowest procedure for nondecreasing dis-
count rates. Another key result links a discounting procedure’s speed and amount with the
time it takes to accumulate present value (its time horizon). The paper then characterizes
a number of existing and new discounting procedures and provides closed form expressions
for their amounts, speeds, and time horizons. Hyperbolic discounting, for example, can be
parameterized in terms of speed and amount but fails to allow for the fast discounting im-
plicit in the rising yield curves observed in today’s bond markets. The hyperbolic family can,
however, be shown to include procedures that are, in a well-defined sense, infinitely slow but
that nontheless converge to a finite present value. Currently proposed procedures for aggre-
gation of individual discount functions into a representative one — by averaging of discount
rates or of discount functions — suffer important shortcomings. We propose an approach to
aggregation, averaging of normalized discount functions (ANDF), that avoids these problems
and that we show to result from simple averaging of the amounts and time horizons of the
discount functions being aggregated. We further prove that under generally applicable as-
sumptions ANDF results in slow discounting (relative to the speeds of the discount functions

being aggregated).
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This draft: March 26, 2003

DISCOUNTING!
by

Dean T. Jamison and Julian S. Jamison

Discounting at a constant rate has the virtues of familiarity, analytic tractability, time-
consistency of preferences, and a well-understood axiomatic foundation. That said, perceived
shortcomings of exponential discounting procedures (i.e. those that have a constant discount
rate) have led economists in diverse fields increasingly to employ discounting procedures in which
the discount rate varies over time. Examples occur in contexts involving the full range of time
horizons.

In the case of long horizons — for example, hepatitis B immunization — benefits can occur
half a century or so after the intervention. Returns to R & D in health (and elsewhere) can
continue over even longer periods. Systematic efforts to assign priority to health interventions
must include mechanisms for comparing interventions whose outcomes span much time with those
whose benefits accrue as they are implemented, such as treatment for diabetes or renal dialysis.
Environmental and education policies likewise have outcomes in the distant future — often, in the
case of the environment, a substantially more distant future than for health. Using exponential
discounting to generate a present value for outcomes in the far future can generate, with a suf-
ficiently low discount rate, as modest a discounting of far-future outcomes as might be desired.
Giving noticeable weight to the far future with exponential discounting comes at the cost, how-
ever, of entailing virtually no discounting in the short- to nmedium-term. Hence the literature on

economic evaluation of environmental and health projects has, increasingly, contained proposals

! National Institutes of Health (NIH) Contract No. YI-10005702 provided partial support for preparation of this
paper. Jia Wang provided helpful inputs, and the authors received valuable comments on an early draft at a
seminar at Resources for the Future. Johannes Horner and Andrew Metrick provided useful guidance, and Nancy
Hancock provided valuable research assistance. Parts of Section 1 were presented to a plenary session of the 2nd
Congress of the International Health Economics Association, Rotterdam, June 1999. Conclusions and opinions

expressed are those of the authors and not of the U.8. government.



for use of discount rates that decline with time, or ‘slow discounting’, although actual practice
for the most part continues to use constant rates.?

A more recent strand of work in economics imports findings from experimental psychology into
the understanding of economic behavior (George Loewenstein, 1992; Frederick Shane, Loewenstein
and Ted O’Donoghue, 2002). Psychologists ~ and the behavioral economists using their findings
and methods - focus much of their interest on behavior over relatively short periods, behavior
that often seems consistent with initially high but rapidly falling discount rates. This generates
interest in slow discounting from the perspective of short time horizons in addition to the far
longer horizons of those with concerns for health and the environment.

The time period of interest for financial markets lies between that of the behavioral and
environmental economists — typically six months to thirty years. The rising yield curves that
characterize today’s bond markets imply fast discounting (in a sense that we will make clear).
Financial economics, then, includes a third strand of analysis that routinely employs non-constant
rate discounting,

The multiplicity of origins of interest in non-constant rate discounting poses the challenge of
generating discounting procedures that are flexible enough to handle short, medium and long time
horizons and that are capable of generating discounting that is both slow and fast. Our purpose
in this paper is to provide theoretical underpinnings for the increasingly diverse literature using
non-constant rate discounting by drawing implications of distinguishing the speed of discounting
from the total emount by which the future is discounted. Once these concepts are separated,
the existing heterogeneous collection of proposals about how to discount can be quantitatively

characterized and alternative proposals for aggregation of multiple individual procedures into a

*This paper has been prepared as background to the Disease Control Priorities Project (DCPP), an effort to
assess the cost-effectiveness of a broad range of health interventions. The DCPP is cosponsored by the World Bank,
the National Institutes of Health (NIH), the World Health Organization and the Bill & Melinda Gates Foundation.
Antecedents to the DCPP (Dean T. Jamison et. al., 1993; World Bank, 1993) used constant rate discounting
(at 3%), which is consistent with current guidelines for economic evaluation of health projects (Joseph Lipscomb,
Milton C. Weinstein and George W. Torrance, 1996). The specific practical issue we seek to illuminate in this paper
is whether — and, if so, how — the DCPP should depart from current best practice in the health cost-effectiveness

literature.
*Although almost all advocates of variable rate discounting for project evaluation propose slow discounting,

Amartya Sen (1972) has noted circumstances where fast discounting might be appropriate.



social one can be better evaluated. Important work continues on the nature of the factors (e.g.
time preference, the return to capital and the completeness of financial markets) that influence
discounting’s magnitude, and on the arguments for and against discounting at a constant rate.
There is a natural division of labor between these topics and task of characterizing the basic
structure of discounting. This paper addresses the latter, the theory of discounting itself.
Section 1 provides examples of slow and fast discounting and introduces our approach by pro-
viding definitions of the amount, the relative speed and the time horizon of discounting procedures.
We next discuss the ways discounting procedures can be characterized — i.e. by discount rates,
discount functions, discount factors, yield curves, and present value functions — then summarize
(and expand) the list of discounting procedures currently in the literature. Section 3 formalizes
our definitions and conveys our results relating the amount, the speed, and the time horizons of
discounting procedures. Section 4 deals with aggregating multiple discounting procedures into
8 representative one, and Section 5 draws brief conclusions for policy. An Appendix contains

derivations of results stated in the text.

1 Introduction: Basic Concepts

If b(t) is a time stream of net benefits then the standard formula for exponential discounting,
oo
(1) present value of b(t) = [ b(t)e "dt
Jo

defines the present value of b(t) as a function of the discount rate r.* Focusing on the special
case of a unit stream of benefits [b(t) = 1,0 < t < oo allows examination of characteristics of
the discounting procedure itself. We use this approach throughout. Two of the ways of defining
a discounting procedure are by a discount function, d(t) - where d(0) = 1, d(t) > 0 and d(?)
nonincreasing for all ¢ — or by a present value function, pu(t), that gives the present value of a

unit stream of benefits accumulated to time ¢ :

(@) polt) = /0 d(z)dz.

1The literature in engineering and physics refers to the present value of b(t), expressed as a function of 7, as its
Laplace transform, and extensive tables of Laplace transforms provide a convenient source of closed form expressions

for present values. See, for a brief treatment, 1. . Skolnikoff and R. M. Redheffer (1958, Appendix B).



We define the ‘present value of d(t)’ to be pu(oo), and the initial subsection of this chapter
discusses the speed and time horizon of a discounting procedure in terms of how pu(t) rises to
p{co).

When discounting at a constant rate r, pv(co) = »~!, which increases as r declines and
becomes infinite when r = 0. More generally if [;° d(t)dt fails to converge, pv(co) = oo, The
infinite present value of exponential discounting when r = 0 raises the issue of nonconvergence
of other discounting procedures for which tgrgo r(t) = 0. The literature has neglected this issue
although a number of procedures that have been proposed for slow discounting do, in fact, fail
to converge. The second subsection of this section discusses these issues and introduces concepts
of strong and weak convergence that play important roles later in the paper. Weakly convergent
d(t)s, in particular, provide alternatives to zero rate discounting for those who - like Frank P.
Ramsey (1928) and 46 economists out of the 2,160 surveyed by Martin L. Weitzman (2001) -
hold a preference for giving genuine weight, in a sense to be made precise, to outcomes in the

extremely distant future.

1.1 Slow and Fast Discounting

Consider the following four discount functions:

(3) exponential: d(t) = e™™, where r = 0.02

hyperbolic: d(t) = [1 + (¢%/u)t] —u2/a? ’

(4)
where p = .04 and ¢ = .029
quasi-hyperbolic: d(t) =1 for £ = 0 and

(5) d(t) =b(1 +7)~¢ Y for 1 <t < oo andt an integer,
where b = 0.6 and r = .0121.5

() time-transformed exponential: d(t) = et

where r = .000314 and s = 0.5.

Equation (3) is the discount function for an exponential with a discount rate of 0.02 and, hence,
a present value [= pv(oo)] of .027! = 50. Equation (4) represents the particular form of the hy-

perbolic family that Weitzman (2001) labeled ‘gamma discounting’, with one parameter modified

4



slightly to reduce present value from the 54.8 his parameters imply to 50. Equation (5) is the
‘quasi-hyperbolic’ function used by David Laibson (1997), again with parameters modified to re-
duce present value from his implied 60.4 to 50. Daniel Read (2001) has suggested the formulation
in equation (6), which is an exponential with the value for time transformed - in this case by
squaring it - before being exponentiated. We have again chosen parameters so that pv{oco) = 50.

We will in due course further discuss each of these functions, but our purpose now is simply
to observe that although each has a present value of 50 they differ markedly in how rapidly they
acquire that present value. Figure 1 illustrates this point by plotting, for each of the discount
functions, how its associated present value function rises with time to its asymptote of 50. Note
several points: both the hyperbolic and quasi-hyperbolic functions rise more slowly than the
exponential in the sense that, for both of them, pv(t) is strictly less than it is for the exponential
for all £ > 0. They can thus, in some sense, be viewed as slower than the exponential with the
same present value. Second, what we have labelled the time-transformed exponential is, with the
indicated parameters, faster than the exponential. Third, the differences among the procedures
translate into major differences in the weight given the far future: while the time transformed
exponential has acquired essentially all of its present value within 150 years, and the exponential
within 250 years, the hyperbolic has over 6% of its total present value still to be acquired after
500 years. Finally, since the present value functions for the hyperbolic and the quasi-hyperbolic
cross, neither can be considered strictly slower than the other. Crossing of Lorenz curves provides
a close analogy. Just as the Gini coefficient provides one way to comnplete the inequality ordering
on income distributions generated by Lorenz curves, so, too, will an area based measure allow
completion of the ordering of the relative speed of discount functions.

Figure 2 provides a geometrical motivation for the definitions of time horizon and relative
speed that we now introduce. The greater the area between the pv(co) of a discounting procedure
and its pv(¢) function the slower, intuitively, it appears to be. We have denoted this area for the

exponential in Figure 2 as A, and the following expression gives its value:

(7) A =f0°°[r—1 —fot e~ da] dt,

where the inner integral is, of course, the expression for pv(t) for an exponential, and =1 is pu(o0)

for the exponential (illustrated by the horizontal line at 50). Evaluating the integrals in equation

5
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Figure 2:
The Time Horizon and Relative Speed of Discounting
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(7) gives:
(8) A= r2

Likewise B is the area between the quasi-hyperbolic and the line 7! ( = 50 in Figure 2). The
ratio A/B (= r=2 B™!) provides a natural index of the speed of this quasi-hyperbolic relative to
that of an exponential with the same present value.

We denote the relative speed of a discounting procedure®, D, to be p{D) and the preceding

discussion suggests the following definition:

(9)  (9a) A(D) = area between pvp(co) and the exponential with the same
present value as D, i.e. the exponential with an 7 of prp(co)™!;
(9b) B(D) = area between pvp{co)and pup(t)
= /0 co[p'uD(cx)) — prp(t)] dt,if this integral converges; and
A(D)/B(

(9c)  p(D) Dj.

For an exponential discount function p(D) = 1. We define D to be slow if p(D) < 1 and fast if
p(D) > 1.

We have defined the present value of a discounting procedure in terms of how much it discounts
a unit stream of benefits. The more that one discounts the future (as a whole), the less the unit
stream will be worth now. It is thus natural to define the amount of discounting for a procedure,

(D), to be the inverse of its present value:

(10) (D) = Uooo dD(t)dt]_l .

For example, if D is an expeonential procedure with constant discount rate 7, then a{D) is simply
r:aD) = [f7 et ~! = ¢, This makes sense insofar as we think of higher discount rates as
discounting away the future to a greater extent.

Another characteristic of potential interest for a discounting procedure concerns how long a

time the procedure takes to build up to, say, half of its ultimate present value. We refer to the

8A discounting procedure can be defined in terms of its associated discount function, dp(t), its present value

function, pup(t), its discount rate function, rp(t), or in other ways, as discussed in the next section.



time required for accumulation of present value as the time horizon of a procedure and introduce
several alternative mathematical definitions. The line segments (a,b) and (a,c) in Figure 2 show
how many years it takes the exponential and quasi-hyperbolic procedures to accumulate 25 of
their present values of 50. The times are, respectively, 35 and 58 years. We define ‘median time to
accumulation of present value’ for a procedure to be the time required for it to accumulate 50%
of its present value. We label this 7(D), which is given by the following expression:

b dp®) di_ o

pu(D)

Just as there is a median time to accumulation of present value so, too, can one define a mean

(11} 7{D) = t* such that

time, which can be thought of as how far from time zero, on average, the present value is being

accumulated from. We label the mean time to accumulation as 8(D), given by:

(12) 8(D) = ——‘Ibw;jf 1(;)) &

Although the concept of median time, 7, perhaps conveys more intuitive content than mean time,
#, the latter’s analytic tractability more than repays its inclusion.
1.2 The Issue of Convergence
Initially proposed variants of hyperbolic discounting took the form:”
(13) dp(t) = 1/(1 + at).

The following brief argument shows that dj(t) has infinite present value. Choose b to be greater

than a+1. Then, fort > 1, 1/bt < 1/(14at) = dp(t). For the harmonic series (1, 1, , ..., 1, ...),

=0

(3 ? 2
however, lim E 1/t = oo and, hence,  lim E 1/t = lim E 1/bt = co. Since dp(t) = 1/(1+at)
T— 00 =00
t=1 t=1 t=1

is everywhere greater than 1/bt, it too diverges.® To put this slightly differently, an improved

"See, for examples, Charles M. Harvey’s (1986, 1994) early important work on nonconstant rate discounting
and work in the psychology literature of Richard J. Herrnstein (1981). George Loewenstein and Drazen Prelec
{1992) discuss and provide an axiomatic foundation for a ‘generalized hyperbolic’ that places an exponent, k, on
the denominator of equation (13). Many parameterizations are possible le.g. equation (4)] and, in this paper, we
refer to the generalized hyperbolic family simply as hyperbolic. The hyperbolic will have a finite present value if

and only if k > L.
“Basic convergence properties of infinite sums and improper integrals appear in standard texts such as those of

Tom M. Apostol (1967) and Walter Rudin (1976).



outcome in each time period by a finite amount X, however large, up to time ¢*, also arbitrarily
large, would be more than counterbalanced in present value terms, using the discount function
dp(t), by a decrement z, however small, to all outcomes after t*. It is precisely this property of
making outcome changes over any finite time horizon irrelevant compared to tiny but sustained
changes in the extremely distant future that leads to objections to exponential discounting with
a rate of 0.

The point of this example is simply to illustrate the importance of paying attention to the
issue of convergence when selecting a discounting procedure for evaluation of long time horizon
investments.” Even with a finite but long time horizon present values can be quite sensitive to the
discount rate in outer years — hence the importance of explicit consideration of the total amount,
a(D), by which a procedure discounts the future.

As the example of equation (13) makes clear, the condition that lim d(¢) = 0 fails to guarantee

t—oo
convergence; this condition is, however, necessary. Put somewhat loosely, d(f) must not only go

o o)

to zero but go to zero sufficiently rapidly if Z d(t) is to be finite. Implications for r(t) are the
t=0

opposite: it must go to zero very slowly or not at all.!® If

(14) lim r{t) =+, r* >0,
t—o0

then in the limit d(t + 1) < I—‘ﬂ(_%);, which guarantees convergence. Analogous results hold for
continuous time. All exponential discount functions, then, or ones that are ultimately exponential
~ in the sense that equation (14) holds — will yield finite present values. On the other hand, if for
all ¢ greater than some t*, 7(t} = 0 [but d(t) > O still] then the present value will be infinite (e.g.
Weitzman, 2001, Table 2).

Having a convergent discounting procedure, however, does not necessarily entail convergence

of the integrals defining our concepts of the speed of discounting [equation (9b)] or of the mean

time to accumulation of present value jequation (12)]. Equation (12) illustrates the question of

9The issue of convergence assumes less importance in modelling phenomena over shorter periods as in the
psychological literature or some areas of engineering. Sokolnikoff and Redheffer (1958, p. 176) observe, for example,
that “... divergent Fourier series often arise in practice, for example in the theory of Brownian motion, in problems
of filtering and noise, or in analyzing the ground return to a radar system. Even when divergent the Fourier series
represents the main features of f(z) ...".

'0Tg take an example: if (t) = 7,e™*" then 7 will decline from an initial level of r, to 0 too rapidly for the

present value of the procedure to be finite,



convergence more clearly since its integrand, td(t), is the product of a function going to zero and
a function going to co. Stronger conditions on d(t) must, obviously, obtain for this integral to
converge than for the integral of d(t) to converge.

We define a discounting procedure to be strongly convergent if the integrals both of its related
discount function, d(t), and of td(t) converge. [The convergence of td(t) will turn out to be
equivalent to convergence of equation (9b).] We define a procedure to be weakly convergent if
d(t) converges but td(t} fails to converge. A weakly convergent procedure has the potentially
desirable property of giving infinite weight to the future — in the sense that the average time to
accumulation of present value is infinite — while still having a finite present value. Equation {(4)
provides an example of a weakly convergent procedure.

We have in this Section introduced a number of concepts that we use to characterize discount-
ing procedures and that we will relate to each other later in this paper. Table 1 draws those

concepts and their definitions together in one place.



Table 1:

Definitions of Key Concepts

Concept

Defining Expression

1. the present value of a discounting

procedure, pv(D) or pvp(oo)

2. the amount by which a procedure

discounts the future, a(D)

3. the relative speed with which a

procedure discounts the future, p(D)

4, the median time to accumulation

of present value, 7(D)

5. the mean time to accumulation

of present value, 6(D)

6. strong convergence of a

discounting procedure

7. weak convergence of a

discounting procedure

pv(D) = 5~ dp(t) dt

p(D) = [a(D)? [5° (pv(D) = pun(t))de] ™ ;
D is slow if p(D) < 1 and fast if p(D) > 1

7(D) = t* such that [} dp(t)dt = 0.5 pv(D)

D is strongly convergent if pv(D) and #(D),

rows 1 and 5 above, are both finite.

D is weakly convergent if pv(D) is finite
but #(D) is not, i.e. if the procedure has a
finite present value but an infinite mean time

to accurnulation of that present value.

10



2 Discounting Procedures

A discounting procedure can be defined in multiple ways, each of which leads to a discount
function, d(t), that assigns to each future time ¢ a coefficient by which the net outcome at that
time can be converted to its present value or the time 0O ‘equivalent’ of the time ¢ outcome.!!
Recall that the requirements on a discount function d, defined for all ¢ > 0, are that d(0) = 1
and that d(t) be nonnegative and weakly decreasing everywhere. For instance, d(0) = 1 may
be interpreted as the normalization of time 0 as the present. We now digress briefly from our
development of results concerning characteristics of discounting procedures (and how they can be
aggregated), first, to summarize how different ways of defining a discounting procedure relate to
its discount function and, second, to selectively overview (and add to) the menu of discounting

procedures currently in the literature.

2.1 Alternative Ways of Defining Discounting Procedures

Table 2 lists five functions that can, in addition to d(t) itself, be used to define a discounting
procedure and relates each of these to d(t). For reference the relation to d(t) is given for both
discrete and continuous time formulations; as already indicated, however, we develop our results
entirely in continuous time. Four of the potential defining functions - the discount rate, discount
factor, yield curve, and present value — are familiar, although they often appear in different
contexts. We introduce a fifth defining function in addition to these four, which we label the
‘agsociated probability density function’ (or pdf).

Table 2 states (without proving) the relation between each of the defining functions and d(t),
and thus provides a mechanism for transforming any one of them into another. Row 1, for
example, shows the relation of d(¢) to the discount rate function r(t) by giving d(t) as a function
of r(t) and vice versa. Row 2 shows the relation of discount factors - the standard representation

of discounting in game theory, for instance - to d(t).

'We consider only deterministic, multiplicative discounting procedures that are additively separable over time.

See conclusion for a brief discussion of various axiomatizations.

11



Table 2

Relations Between the Discount Function and Other Defining Functions

Definitional function Discrete time Continuous time
t
1. discount rate, r(t) d(t) = H[l + (i) ! d(t) = e Jo r(=z)d=
i=1
r(t) = 45l —1 r(t) = =i
t
2. discount factor, d(¢) dt) = H 6(4) d(t) = eJo In6(z)dz
i=1
(t) = d‘i_tl) 8(t) = e W/d®)
3. yield curve, y(t) d(t)=[1+y(t)™" d(t) = e V()

yO =[O -1yl = -

4. present value, pu(t) d(t) = pv(t) —pv(t — 1) d(t) = pv'(¢)
=3 di) po(t) = fy d(z)dz
=0
5. associated pdf, f(t) d(t) = Z f) d(t) = [ f(z)dx

f) =d) —de+1)  f(0)= ()

Note: our conventions here are the usual ones, namely that the empty product is
equal to 1 and the unit stream begins to accrue immediately at time 0. In discrete
time, r(t) refers to the discount rate between time t — 1 and time ¢, and similarly for
§(t). Also in discrete time, pu(t) is the present value accumulated up through and

inclusive of time t.

12



Row 3 relates the yield curve from the finance literature to d(¢). The relation here is a useful
one for interpreting results in the empirical literature on assessment of discount rates since they
are frequently reported (implicitly) as yield curves.!? Row 4 relates d(t) to the cumulative present
value function. Finally, Row 5 results from the observation that the inverse cumulative's of any
pdf defined on [0,00) will, in fact, be a discount function with a present value equal to the

expectation of a random variable with that pdf. Thus if f is a pdf on [0, 00), then

¢ oo
(15) df(t)=1—‘/0 f(a)de = [ F(2)dz

will be a discount function.

The potential utility of the pdf representation is that equation (15) allows us to use knowledge
of pdfs to generate potentially new classes of discount functions. If we start with the exponential
pdf, f(x) = re™™ then this procedure leads back to the exponential discount function, so in
this case equation (15) provides nothing new. Generalizing slightly, however, yields a new single

arameter family of discount functions. Start with ze™"* and normalize to get a pdf:
% ¥ g

—rT
= 2
fo© xe~m2dx

—TT

(16) f(z)
The formula for d(t) in row 5 of Table 2 gives, then, the following discount function:
(17) df(t) =e "1 +7t).

Existing discount functions, other than the exponential, are either 2 or 3 parameters, and it may
for some purposes be valuable to generalize the exponential but stay with a single parameter,
although equation (17) generalizes the exponential only toward fast discounting. We find it more
potentially useful in this case to generalize (17) to a two-parameter discounting procedure, which
we have labelled the ‘augmented exponential’ procedure, and which leads directly to the next

subsection.

"2See Burton G. Malkiel (1998) or John H. Cochrane (2001, Chapter 19) for discussions of yield curves and
the term structure of interest rates. Maureen L. Cropper, Sema K. Aydede and Paul R. Portney (1994), in an
important early paper on discounting of lives saved, report a 16.8% discount rate over 5 years declining to 3.4%

over 100 years, a ‘yield curve’ formulation.
3The inverse cumulative of a pdf is 1 minus the cumulative.
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2.2 Discounting Procedures: Selected Options

The following paragraphs list a number of discounting procedures, some from the literature
and some new. Brief background is provided for some. The exponential forms the basis for several
procedures that result in a strictly positive asymptotic value of r, and we now turn to these.

The first is the just-mentioned augmented exponential, which takes the form
(18) d(t) = e "1 + At).

The second class of functions derive from generalizations of the discrete time quasi-hyperbolic
discount function introduced as equation (5). This function can be generalized in a variety of
ways. First, and most obviously, the point of discontinuity can be made to be at any time, not
just 1 (which was in any case already a parameter because of need for the choice of time scale).
Second, an option that we do not pursue is to introduce splits at multiple time points [see, for
example, Weitzman (2001)]. Third, as Figure 3 illustrates, the generalization to continuous time
can be undertaken either by introducing a discontinuity in »(t) — and, hence, in the derivative of
d(t) - or by introducing a discontinuity in d{t). We label these the ‘split rate quasi-hyperbolic’
and the ‘split function quasi-hyperbolic’. The latter allows 7(¢) to remain constant [except for
a spike to infinity at the time of the discontinuity in d(t)] and has been utilized by Christopher
Harris and David Laibson (2000} and, in quite a different way, by Cline (1999). We find any of
the discontinuities unaesthetic, but are more comfortable with splits in »(¢). In Proposition 3 and
the Appendix we explore properties of both generalized quasi-hyperbolic procedures.

Finally, we wish to include procedures that have a limiting discount rate of 0 as time grows
indefinitely. The only standard example of this is the hyperbolic that we have already mentioned.
The other procedure that falls into this class (at least for some parameter choices) is what we
have labelled the time-transformed exponential that was introduced by Read (2001) and used in

equation (6):
(19) d(t) = e """

Here the parameter s either expands or contracts time relative to constant rate exponential
discounting.'* Both of these procedures are relatively tractable and intuitive methods of departing

from exponential discounting, and both involve only two parameters.

“One can, in principle, transform time with a broad range of functions g(¢) to get d(t) = e~"9%"), For exam-
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Figure 3:
Two Generalizations of the Quasi-hyperbolic Discounting Procedure

Panel A -- Split Rate Quasi-hyperbolic
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Note: A quasi-hyperbolic is defined in discrete time, with values of the discount function given by (1, B3,

52, B5°,...), where & is a discount factor and P is a constant. This figure shows two alternative
continuous time formulations that generalize a quasi-hyperbolic with § = 0.78 and 6 = 0.95.

In Panel A r(t) is discontinuous at t = 1, dropping from 0.25 to 0.05, leading to a change in the slope of
d(t) at 1 where d(t) = 0.78. In Panel B r{t) = 0.05 for all t except t = 1 where it is infinite. If r(t) is an
appropriately formulated Dirac delta function, then d(t) can be made to drop from 0.95 to 0.78 at

t = 1. Choice of the unit of measurement for time determines the time of discontinuity which is assumed,

without loss of generality, to occur at t = 1 in these examples.



3 The Amount, Speed and Time Horizon of Discounting

Concepts introduced in the preceding sections are not independent of one another, and the
initial subsection that follows identifies and proves the central relationships among them. The next
subsection then provides closed form expressions for key characteristics of a range of existing and
newly proposed discounting procedures. Although many of these characteristics can be expressed
simply (given an appropriate parameterization of the procedure), the proofs can be somewhat

lengthy and have for the most part been relegated to the Appendix.

3.1 Relations Among Amount, Speed and Time Horizon

Recall that we define the amount of discounting to be

(20) (D) = [ fo - d(t)dt} -

where D is a discounting procedure with associated discount function d(t). A large value for o
(we drop the D when there can be no confusion) means that a given procedure discounts later
times a lot, i.e. places relatively little weight on the future. As we saw, if D is an exponential
procedure with constant discount rate 7 > 0, then a = {5~ e‘”alt]_1 =[1/r] 7} = . We also

defined the present value function pup(t) = foﬁ d(z)dz, and from there the relative speed

_ Jo_ lpvpE(00) — pups(t)] dt
Jo” lpup(oo) — pup(t)] dt

assuming the integrals converge, where DE denotes the equivalent constant-rate exponential for

(21) p(D)

any discounting procedure D, i.e. e"*P}, This ratio is then exactly the ratio of areas illustrated
in Figure 2. If p(D) < 1, then D has a larger area above its present value function than does DE,
which is what we have referred to as slow discounting. If p(D) > 1, then D has a smaller area

(pvp climbs more steeply) and we call it fast.!%

ple, Roelofsma (1996) discusses Weber’s Law from the psychology literature, for which g{¢) = In¢. In this case,

interestingly, the resulting discounting procedure can be shown to be a member of the hyperbolic family.

'>0f course, if 7 = 0, then f;” d(t)dt = co and a = £ = 0 = r still holds.

' The diagrammatic representation suggests a link between our notion of relative speed and the standard defini-
tions of stochastic dominance. Indeed, either first- or second-order stochastic dominance implies a slower procedure,
One distinction is that our notion, being real-valued, induces a complete order, unlike stochastic dominance. The
more fundamental difference is that in the uncertainty setting dominance does not concern preferences (utilities) but
rather states of nature, whereas in our setting the dominance comparison is actually between individual discount

functions.
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Noting that pup(c0) = a~! and evaluating the numerator as [;° [va(oo) — j};’ e“"“’d:c] dt =
o et —a M l—e )] dt = 7! [Peotdt = a2, we get
oo -1
(22) o) = o [ (@™ = poo(t) ¢
o
Thus any exponential procedure trivially has a relative speed of 1.

Given a discounting procedure D with discount function d(t), we can define the normalized

procedure oD by
(23} ad(t) = a(D)d(t)

(so the notation is not ambiguous). We refer to this as normalized because [;°ad(t)dt =
a(D) [;7 d(t)dt = a(D)|a(D)]"! = 1. We will return to the normalized procedure in Section
4 when we discuss aggregation, but for now we point out that it can be interpreted as a probabil-
ity density function on {0, 00) and this allows us to define the median and mean time horizons for

accumulation of present value. Specifically, let 7(D) and (D} be the median and mean of this

density:
(D)
(24) 7(D) solves / ad{t)dt = 0.5 and
Jo
(25) 8(D) = /0 tad(t)dt = a( D) fo td(t)dt.

For the exponential with d(t) = e~ we have @ = r and thus 1 — e~ ™" = 0.5, so 7 = (In2)/r.
Similarly, § = r [ te~"*dt = r(1/7%) = 1/r.77

We may interpret the mean time 8(D) as the average point in the future at which present value
is accumulated, and it should thus be related to the speed of discounting®. A natural question

to ask is what happens if relative speed is defined as the ratio of mean times (with 6(D) in the

YIf » = 0, this leads to 7 = oo and # = oo, which is intuitively plausible since it is impossible to accumulate an
infinite present value in a finite (expected) amount of time. In general, if a(D) = 0, we simply define 7(D) and

8(D) to be cc.
15 The observant reader has noticed that we defined a measure of relative speed but not of absolute speed. The

most natural measure of absolute speed comes from the area above the normalized present value function, rather
than the ratio of areas. Since higher values should represent faster procedures (smaller areas), the absolute speed o is
then the inverse of this area: o(D) = [a(D) I (pon(oo) — pen(t))dt| =!It can be shown (similarly to Proposition
1) that a{D) is then simply [#(D)]™", or equivalently a(D)p(D), for any discounting procedure D. For instance,
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denominator, so that a large § corresponds to slow discounting) rather than as a ratio of areas.

Our first result says the two notions are equivalent, which will prove useful in calculating p(D).

Proposition 1: The relative speed of any discounting procedure D is the ratio of the

mean time horizon for the equivalent exponential (DE) to the mean time for D; i.e. p(D) =
G(DE)/6(D).

Proof: We see that, starting from the definition, p(D) = [o® [57 (a~! — pup(t)) a!t]_I =
- _, -1 o _ ,
[a2 i (‘]0 d(z)dz — [; d(:n)d:c) dt] = [e® [i° [ d{z)dxd) ' Changing the order of inte-
gration, thisis [o? [ [ d(rz:)a!ttcia:]_l =a ! [o [ d(z) (fy dt) d:c]—l =a[af° :r:d(:z:)da:]_1 =
o(DE)(O(D)". m

Finally, we wish to relate the relative speed of a discounting procedure to its discount rate. In
particular, intuition suggests that a decreasing discount rate yields a procedure that is in some
sense slow, It is obvious that such a procedure is slower (formally, in the sense defined in footnote
18) than the constant-rate procedure that starts at the same discount rate and stays there, but on
the other hand these two will not have the same total present value. Qur second proposition states
that, even compared to an exponential with the same amount of discounting, any decreasing-rate

procedure is indeed slow.

Proposition 2: If the discount rate r(¢) is weakly decreasing (resp. increasing), then the
corresponding discounting procedure is relatively slow (resp. fast), ie. p < 1 (resp. p > 1).
Furthermore, this result is tight in the sense that if r(t) is weakly decreasing everywhere and
strictly decreasing somewhere, then the inequality is strict.

Proof: Let d(t) be the discount function with decreasing rate r(t), and let p = puvg(oo) =

Jo~ d(t)dt. We can think of d as the survivor function for a failure density'?, in which case r(t)

the exponential with d(t) = ™" has an absolute speed of r, s0 in some sense it has the same amount and speed of
discounting; this is exactly why the two notions are difficult to disentangle in a constant rate world. Although this
measure of absolute speed has some utility and interpretive appeal, it too mixes the ideas of amount and speed of

discounting (and of course is not independent of them), so we have not pushed it further.
YFailure analysis arises in the study of systems reliability. The primitive in these analyses is the probability of

no failures before time #; this is the role played by d{t) in our setting. In reliability studies this is referred to as the
survivor or reliability function, and it is the inverse cdf of the failure density (i.e. the probability of failure at any

given time). The failure rate as a function of time is —d’/d, which is thus exactly our discount rate r(¢).
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decreasing is exactly the definition of a decreasing failure rate (and p is the mean time to failure).
Then for any strictly increasing function f on [0,00), [;° f(t)d(t)dt > [ f(t)e~*/#dt by Theorem
4.8 (p. 32) of Barlow and Proschan (1965), with equality only if d(¢) = e~!/# identically. So let

f(O) =t [Ctd(t)dt > [ te tidt = p? = [f5° d(t)dt]Q, implying that

(5™ d(eya]®
[0 td(t)dt s1

as desired. Equality implies that d must be exponential with amount «« = 1/p. Likewise, 7(t)

p=

increasing corresponds to an increasing failure rate, and all inequalities are reversed. B

We can alternately interpret this conclusion as saying that the exponential is the fastest
discounting procedure within the family of those with weakly decreasing discount rates. As we
have seen, the exponential discounting procedure d(t) = e~ also has a total present value equal
to its mean time horizon: pug(co) = & = 1/r. Proposition 2 allows us to answer the question of

whether or not it is the unique discounting procedure with this property.

Corollary: If d(t) is a discount function with monotone discount rate r(¢) and satisfying
pg(oo) = 8(D), then d is exponential: d(t) = e~/

Proof: From the definitions, pvy(co) = 6 means f;° d(t)dt = ifm%, le. [[o°d ] =
]5” td(t)dt. But this again corresponds to equality in the proof of Proposition 2, so d must

identically equal the equivalent exponential. W

3.2 The Amount, Speed and Time Horizons of Key Discounting Procedures

QOur main characterization theorem provides, for several important discounting procedures,
actual values for each of the various concepts we have defined.

Proposition 3: The discount rate, amount, relative speed, and median and mean time
horizons for the following procedures are as stated in Tables 3a and 3b: exponential, augmented
exponential, quasi-hyperbolic (of both types), hyperbolic, and time-transformed exponential.

Proof: See Appendix.
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Table 3a:

Characteristics of Selected Procedures: r(t) Asymptotically Positive

Characteristic EXP

AEX

1. discount e Tt

function, d(t) (r > 0)

2. discount

rate, r(t)

3. amount of

discounting, o

4. relative

speed, p

5. median
r~Un?
time, 7

6. mean

time, 8

e (1 + rs(s — 1)t)

(r>0,1<s8<2)

-1
rs (1 - 1+1‘ssis—l}t)

r= In{2+2r(s—1 )T}

s

28—1..—1
ez

QHR

QHF

e T if £ < 1r

e—‘l‘t'ﬁs(t—t') Zf > i

(r,t*>0;8>0)

rif <t
sift>t*

TS B_ —rt*
g A=

[8r+(1-8)s}
Bre(1-3)s+pt*rs(r—s)

0<p<2)

-1 287 .
t*‘f"s ].n W%F,
or " lln _T_Ts—ﬁ2i—s
if rt* > In e

Br/s+(1-8)sfr+ 8¢t (r—s)

Br+(1-3)s

e Tt if t < txy
e THif t >
(r,t* > 0; A€ [0,1])

rif t#L,
0o if t=¢*

[

s A= e
1—(1-X)3)%

1—% 1-X7 Z‘.l_l_+r-t')'
(0<p<?2)

=g
- 2
orr 1 In m
if rt* >In(l+A)

1—(1=M)E(1+rt" 7‘_1
1—{1-A)3

Note: EXP refers to an exponential discounting procedure; AEX refers to an aug-

mented exponential; QHR refers to the split rate quasi-hyperbolic; and QHF refers to

the split function quasi-hyperbolic.
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Table 3b:
Characteristics of Selected Procedures: r(¢) Potentially Asymptotically 0

Characteristic HYP TTE
[1+7(1 - 5)¢) " +5) exp(—rt}/®)

(r>0;8<1) (r,s>0)

1. discount function, d(t)

(0 < s < 1 strongly convergent;

s < 0 weakly convergent)

2. discount rate, r(t) Tl_ﬁ?(;i_s)i Lg(1=s)fs

3. amount, o T % /T(s + 1)

4. relative speed, p s I'(s)T(s + 1)/T(2s)
(p<1) (0<p<?)

5. median time, 7 rrH217 1) /(1 —9) no closed form

6. mean time, ¢ (rs)~1 r°T(25)/T(s)

Note: HYP refers to a hyperbolic discounting procedure; TTE refers to a time-

transformed exponential.
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Note that several of the procedures listed in Table 3 reduce to a standard constant-rate ex-
ponential under certain parameter values, namely the augmented exponential for s = 1; the split
rate quasi-hyperbolic for ¢t* = 0 or r = s; the split function quasi-hyperbolic for A = 1; and
the time-transformed exponential for s = 1. Although we do not allow s = 1 explicitly in the
hyperbolic procedure, if we take the limit as s approaches 1 (from below) we get an exponential
with discount rate r, as expected. This can be shown directly, but it also follows immediately
from the discount rate function for the hyperbolic.

We point out that s > 0 is not required for the hyperbolic procedure. In fact, s < 0 is
perfectly legitimate; this corresponds to weak convergence in our terminology. Technically, the
relative speed as a ratio of areas will be identically 0 for any weakly convergent procedure, but it
is useful to allow s < 0 in the definition and to continue to refer to this as a speed.

The formulas for the time-transformed exponential make use of the gamma function I'(y) =
‘]6°° e z¥~1dx. We can calculate, for instance, that if s = 2 (which corresponds to compressed
time), then & = #2/2, p = 1/3 < 1, and 8 = 6/+2; this is an example of slow discounting (and more
generally p < 1 exactly when s > 1). Likewise, if s = 1/2 (expanded time), then a = \/4r/m,
p=n/2>1, and 8 = 1//r7 (fast discounting). The limiting behavior here is also fairly simple
(derivations are in the Appendix). On the slow side, as s — oo, both « and p go to 0; on the
fast side, as s — 0, @ — 1 and p — 2 (both 7 and € go to 1/2). Although the median time 7 for
the time-transformed exponential is not available in closed form, one could easily write down the
integral equation that it solves.

Finally, we note that one can interpret the amount, «, for the split rate quasi-hyperbolic as a
(-weighted harmonic mean of the two underlying rates r and s, where 3 is defined in terms of »
and the time, t*, of the discontinuity in r(t) : 3 = e=™". For this same procedure, the relative
speed p will be greater than (less than) 1 exactly as s is greater than (less than) r, which makes

intuitive sense.

4 Aggregation of Discounting Procedures

Suppose that we start with a population of individuals each of whom uses some discounting
procedure. The individual procedures may differ both in their parameter values and in their

actual functional forms. We wish to aggregate these procedures to achieve a social discounting
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procedure that reflects the preferences of all members of society. Weitzman (2001) pointed to the
importance of this question and the nonobvious nature of the response.?’ Qur work builds on his,

although our conclusion differs.

4.1 Aggregation in General

One obvious aggregation option is to average discount rate functions across individuals. For
example, if person A uses a standard constant-rate procedure with d(t) = e¢™™ (i.e. a rate of
r), and person B uses d(t) = e™%¢, then this method would yield a social discounting procedure
characterized by a constant rate equal to %(r + s). One advantage of this process is that even
if one of the individuals uses nonconvergent discounting (e.g. s = 0 above), the aggregate social
procedure may well be convergent (a notion of robustness). As Weitzman emphasized, averaging
rates has a down side: when society decides how to trade off between two given time points in the
future (effectively measured by the discount rate), it counts everyone's opinion on that question
equally, even those who do not care much about the future. Thus while a procedure that averages
rates is able to successfully aggregate amounts of discounting, it does less well on the shape over
time that discounting should take.

Another natural option is simply to average the discount functions of individuals. In the
example with two exponential discounting individuals, this would lead to a social discount function
of %(e_” + e~**). This aggregate procedure has a discount rate that starts at 1(r +s) for t =0,
and then declines over time to the minimum of » and s. To redress the inadequacy of aggregation
by averaging rates, Weitzman (2001) proposed averaging discount functions and interprets this
process as valuing a dollar at time ¢ according to any particular discounting procedure weighted
by the “probability of correctness” of that procedure. In our example, this probability is 0.5 for
each of the two individual procedures in the domain and is O for all others.

One immediate concern about such an aggregating process is that if any individual discounting

procedure is nonconvergent, then the social procedure will also be, no matter how large the society

U Amartya Sen (1982) overviews an extensive earlier literature that addressed the circumstances under which
an exponential social discounting procedure should have a rate less than the average of the rates of the individ-
ual procedures (also exponential), from which it is being aggregated. More recently, Harris and Laibson (2001)
have considered aggregation across different values of the time of discontinuity in the quasi-hyperbolic discounting

procedure shown in Figure 3, Panel B.

22



(assuming it is finite). This can be avoided if we rule out nonconvergent procedures in the first
place, but it speaks to a larger concern. Basically, under this process, individuals are weighted
equally (in terms of either discount functions or discount rates) at the beginning of time, after
which those who discount less are increasingly favored. This process yields social discounting
procedures whose discount rate functions are both declining over time (as patient individuals are
increasingly favored) and that are low overall (since they start at the social average and go down).
So the shape of the discount function faithfully reflects a weighted average of the individual shapes
{weighted in a reasonable manner by their own sense of relative time preference}, but it skews the
amount of discounting toward those who discount less (in the extreme case, yielding an aggregate
a of 0 if any individual has an « of 0).%!

We seek an aggregating process that avoids the problems associated with simple averaging
of either discount rates or functions. That is, we feel an aggregation process should satisfy two
criteria:

(i) the aggregate procedure should discount the future by an amount that is the average
of the individual amounts (as averaging the discount rates does)®?; and

(ii) the aggregate procedure’s discount rates in the future should place greater weight on
individuals who value the future more highly (as averaging the discount functions does).

Both criteria can be met by averaging the normalized discount functions for each individual
(recall that the normalized function is ad(t) and has a total present value of 1). We then divide
by the value at O of this average function in order to un-normalize and recover a valid discount
function (with d(0) = 1, as is necessary). We label this the average normalized discount function
(ANDF) aggregation process. The ANDF process results in a shape equal to the average shape,
and we will prove that it has an amount exactly equal to the average amount @ (and a mean time

horizon equal to the average mean time #). In our running example, the normalized individual

%1 Joseph Lipscomb {1989) and Dorte Gyrd-Hansen and Jes Sggaard (1998) have proposed an ingenious 2-step
process in which each individual ¢ discounts back (at ©’s personal rate) to the time t; > 0 that an initial event (e.g.
an illness or a treatment) occurs, and that a social rate is then applied to bring each individual’s present value at
the time of the event back to a single present value at time 0. As currently formulated, however, this process would

(like the averaging of discount functions) favor individuals with low discount rates.
**Note that this criterion refers to aggregation of individual procedures into a social one. It has less relevance for

generating an expected value when there is underlying uncertainty in interest rates, e.g. the situation considered

in Weitzman (1998} and in Richard Newell and William Pizer (2000).
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discount functions are re~™ and se~*!, respectively, so the aggregate social procedure is

re 7t 4 set
26 d=(t) = ———— |
( ) D( ) T+ 8

Here a(D) = (r+ 5)/2 and 8(D) = (#~! +s71)/2. Figure 4 illustrates the d(t) and r(£) resulting
from each of the three ways of aggregating two exponentials, in this case with r = 0.02 and
s = 0.20. For the ANDF process applied to these two exponentials, (D) = 0.11, 8(D) = 27.5,
and p(D) = 0.33 (so it is slow).

One interpretation is that the ANDF gives each individual a total weight of 1 to spread across
the future however he or she likes (with the understanding that this will be used to perform cost-
benefit analyses, for instance, so that they will in fact use their true individual discount function to
determine how to distribute this weight). We average those shapes and then un-normalize, which
works out in just such a way as to retrieve the average amount of discounting. This separation
of amount and shape ensures that there is no problem with convergence and that more patient
members of society are favored at later times relative to earlier times, but not overall.

Formally, assume that we have a collection of individuals parameterized by z € X (possi-
bly multivariate), with a probability density across parameters of f(x), so that in particular
[x f(z)de = 1. Then if individual z uses a discount function d(t; ) with associated amount o(z),
we define the ANDF aggregate procedure D by its discount function as follows:?

z )d
o) i) = SR
Because [, a(z)d(0; ) f(z)dz = [, a(z)(1)f(z)dr = [, a(z)f(z)dz, d;5(0) = 1 as required.

To each individual discount function d(t;z) there corresponds a discount rate function r(t; x)

satisfying d(t;2) = —r(t;z)d(t; ) (as in Table 2), where the superscript dot denotes a time
derivative. For the aggregate procedure D, since the d(t;z) in the numerator is the only term

involving time,

— [y o(z)r(t; z)d(t; z) f(z)de
fy alz) f{z)de ’

(28) d(t) =

and therefore

—dp(t) _ Jy ol@)r(ta)d(t; z)f(z)de
dp(t) Jx a(x)d(t; z) f(z)dz

23We require only that fx olc)f(z)dz > 0, i.e. that at least some nonzero fraction of the population uses

(29) rp(t) =

convergent discounting procedures. If f, a(z)f(x)de = 0, then there is no need to normalhize (essentially all

individuals already have the same o, namely o = 0}, so we define dp(t) as simply fx d(t;z) f(z)dx.
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Figure 4:
Three Procedures for Aggregating Individual Discount Functions
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Notes: This figure shows the functions d(t} and r(t) that result from different ways of aggregating two discount
functions: dy(t) = &% and dy(t) = %%



We now prove three core results that relate the characteristics of the ANDF aggregation procedure
to the corresponding characteristics of the individual procedures that were aggregated. Let

= {z € X|afz) = 0}, i.e. Y is the set of parameters that correspond to nonconvergent

discounting procedures.

Proposition 4: If [, f(z)de = 0, then, for the ANDF process defined above, the amount
a(D) and mean time horizon #(D) of the aggregate procedure D are the average amount @ and

the average mean time & respectively.?t

Proof: Since a{z) = 0 for all z € Y, anytime the integrand involves a(z) we can switch
the domain of integration between X and X\Y = X — Y as we wish. We first verify that
I [y alz)d(t; z) f(x)dedt = [5° IX\Y a(z)d(t;z) f(z)dzdt = fX\Y z) f(2) [[o~ d(t; z)dt] dz =
jX\Y a(x) (m)az—)da, (a(z) > 0 on X\Y so ;(1;5 is well-behaved) = _[X\Y fl@)dx = [, f{z)dz -
Jy f(z)dz = 1 -0 = 1, which makes sense since this was an average normalized function. Now
note that the denominator of the aggregate function dy; is constant in ¢, and thus, using the

calculation we just made, the aggregate amount is

D)= [/000 dﬁ(t)dt}—l = [[Xa(a:—;f(fc)d%]l = fxa(l‘)f(fc)dﬂi,

which is precisely the formula for the average amount @ of discounting across the population, as

desired.

For the mean time horizon, we compute & for the aggregate procedure as

oD) = oD) fo ” ta(t)dt

_ Q(D)/ t[fx afx)d (('_))f( ')dn’v]dt

= / /ta(fc (t; x) f(z)dzdt
- [X l:o:(x)./o td(t;m)dt] f(w)de
= [XG(:L')f('c)da:

5 m

M Thys the bar above a particular characteristic denotes expectation with respect to the density f. Exactly

because of the proposition, this will not prove to be confusing terminology.
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In general, if f,, f(z)dz > 0, a(D) will simply be the average over all strictly positive o
in the population: formally, a(D) = 'I'X\Y a(z) f(z)de (with an analogous outcome for 8). The
intuitive interpretation is that any individual who chooses & = 0 (i.e. a nonconvergent procedure),
effectively suggesting an infinite present value, ends up spreading his/her normalized weight so
thinly over time that it has no effect at all on the aggregate?®. We turn next to the relative speed

of the aggregate procedure.

Proposition 5: If the amount a(x) and the mean time §(z) are negatively covariant within a
population X, then the relative speed resulting from the ANDF process is lower than the average
relative speed, i.e. p(D) < B, with equality only if all individuals have the same amount of
discounting « and all individuals have the same relative speed p.

Proof: By Propositions 1 and 4, p(D) = 8(DE)/8(D) = ('ci?")‘l, while p = fy p(z) f(z)dz =
Ix (@(2)8(x)) ™" f(z)dz = (af)~1, where the bar continues to denote expectation with respect to
f. But since (-)7! (i.e. taking inverses) is a convex function on R, Jensen’s inequality implies that
the inverse of the average is weakly less than the average of the inverses, i.e. @)_1 < (aB)-T.
Now cov(a,f) = af — @f by definition, and this is negative by assumption. Hence af < @8,
so p(D) = (E@)_l < @)_1 < (a8)~! = P, and we're done. Furthermore, since (-)~! is in fact
strictly convex, the inequality is strict unless both cov(e,8) = 0 and (a8)~?! is constant across

the population. But these cannot hold simultaneously unless a and 8 are themselves constant,

which is equivalent to a and p being constant. W

In general, we do expect o and 8 to have negative covariance, since placing less total present
value on the future often implies that that present value is reached more quickly. This tendency
is confirmed by looking at the expressions in Table 3, but it need not hold for every possible
choice of distributions f over the underlying parameters. Thus we expect an aggregate procedure
to be slower overall than its components, but it is possible for it to be faster under certain
circumstances.2® In the special case of constant relative speed, however, we can rule out this

possibility.

¥t is possible to construct an aggregate discounting procedure whose amount is always equal to the average
amount, inclusive of x such that a(zr) = 0. In this case the shape of the aggregate function is identical to the
aggregate as defined, so the larger present value means that pu(t) does not converge to pu{oc}, and thus of course

8(D) = co and p(D) = 0. Details are available upon request.
2iHara and Kuzmics (2002) prove a conceptually similar result in the context of risk aversion. Specifically, they
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Coroliary: If p(z) is constant across x, then p(D) < p, with equality only if a(z) is also

constant.

Proof: As always (Proposition 1), p = (af) !, so p(z) constant implies a(z)8(z) = C for

all z. Then we can compute cov(e,8) = cov(o, C/a) = a(C/a) — @(CJa) = C — aCa~! =
o (1 —Ea‘_‘). But Jensen’s inequality once again implies that (@) ! < a1, or 1 < @a~1.
Hence cov(a, 6} < 0 and Proposition 5 applies. The inequality is clearly strict unless o is constant

across the population. W

We turn now to the relationship between the aggregate rate r5(t) and the individual discount
rates r(f; ). In particular, one variable of interest is the limiting discount rate r*(z) = tllxgor(t; x),
if it exists, which gives the asymptotic discount rate for individual x. For any potential social
limiting rate r > 0, let A(r) = {z € X s.t. a(z) > 0, r*(z) exists, and r*(z) < r}; this is the
set of individuals who use convergent procedures and whose limit is no larger than r. Finally, we
define 7, = inf <v' »‘]'A(r) fla)dz > 0>. This is the lowest rate r such that at least some nonzero
fraction of the population has a limiting rate no higher than r. Weitzman (1998) showed that if

the social discount function is constructed by simple averaging of a finite number of individual

discount functions, then 7%, is exactly the asymptotic discount rate for the aggregate. Our final
proposition states that the same is true, without assuming a finite number of individuals, for the
ANDF process, i.e. that in the limit the social discount rate is in some sense the smallest of any
across the population (where, as always for the ANDF process, anyone using a nonconvergent

procedure does not affect the outcome).

Proposition 6: The asymptotic social discount rate for the ANDF aggregation process is
; I — 27
given by: tl_l'rglo plE) = Thin-

Proof: See appendix.

4.2 Aggregation of Exponential Procedures

The aggregation processes defined above can be carried out no matter what the underlying

discounting procedures are. However, if we hope for simple closed-form outcomes, we will need to

show that the representative consumer exhibits strictly decreasing relative risk aversion, ranging from that of the

most risk averse individual to that of the least risk averse as the aggregate consumption level increases.
2"We follow Weitzman (1998) in our notation.
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make some specific assumptions. For the remainder of this section, we assume that each individual
i uses a constant-rate procedure given by d(t) = e~ ".2® This not only simplifies the analysis,
but also allows us to compute empirical results from the data collected by Weitzman (2001), who
surveyed 2160 economists and asked for a single discount rate from each.

We first observe that when aggregating exponentials, all of which have p(z) = 1, the corollary
to Proposition 5 applies, so the relative speed of the ANDF aggregate is [weakly] less than 1.
The aggregate procedure therefore exhibits slow discounting. Furthermore, the aggregate speed
is strictly less than 1 unless all individuals use the same constant discount rate, i.e. are identical.

We begin by considering discrete aggregation of exponentials, i.e. the case when there is a
finite population. Let the number of individuals be n, with respective constant rates ry,...,my,
(possibly with multiplicity, of course). We assume r; > 0 for all ¢ (or equivalently that there are
n individuals with r; > O and the rest can be ignored; see comment after Proposition 4). In this

case the ANDF aggregate procedure has

1 n
(30) = — Z’J”i,
" =1
I
(31) 6=—% r7' and
n -
=1
2
— 7
(32) o(D) =

(i) (i )
These results follow directly from Proposition 4, given that individual i’s amount «; is v; and
i’s mean time horizon 6; is 7, !, Then, using Proposition 1, p(D) can be computed as (@f)~! =
[ (i) (SR )] as stated.

We next study continuous populations by considering two different densities f on the under-

lying distribution of discount rates. First is the gamma distribution, for = > 0:

o
(33) flz) = r—(b)‘e_amﬂ?b_l :

with @,b > 0. This has mean g = b/a and variance 0 = b/e®. Such a distribution fits the

data well {although it has the disadvantage of putting no weight at 0, whereas almost 2.5% of

3476 have also found specific closed-form solutions when aggregating the augmented exponential procedure, but

the calculations are not particularly illuminating. Details are available from the authors upon request.
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the respondents chose discount rates at or below 0). Weitzman, aggregating by averaging of the

d(t)s, showed that the gamma distribution on parameters leads to an aggregate procedure in the

hyperbolic family:

(34) 0 - |15 /a]b.

The ANDF aggregation process, with the same gamma distribution for individual discount rates,
leads to a social discount function (see Appendix for proof) given by

1 1+b
141t/ ai'

(35) d5(t) = {

So it is also hyperbolic, but with an exponent that is greater by 1 than for d~(t), which helps

with many of the convergence issues. Using the formulas in Table 3, we can compute @ = b/a

and p(D) = 1 —1/b. In terms of the mean g and variance ¢? of the density f, we get

2

— o
(36) @ =pand p(D):l—F

whereas Weitzman’s aggregate — given in his parameterization by equation 4 - has

o? a?

(37) oy=p— —andp, =1-
Y i P’y

u? — g2’
These values imply, among other things, that even after ruling out zero discount rates, the aggre-
gate function d.,(t) fails to converge when o > . Fortunately, this is not the case for Weitzman’s
sample (where o is roughly 3% and p is roughly 4%), but of course there is no inherent reason
why it should turn out one way or the other. If the ANDF aggregation process (which is always
convergent) is used when ¢ > p, then the aggregate discounting procedure D is convergent but
only weakly so; in comparison, d,(t) is weakly convergent exactly when o < p but 20 > p, as
occurs in the data.

We wish to also consider an underlying distribution on parameters that is strictly positive at
0, so we adopt the form of the augmented exponential (discussed above as a possible discounting
procedure). Note that here it is playing a very different role, and in fact reasonable parameter
values in this context would cause it to be increasing at first and would thus be impermissible for
a discount function. Recall that the formulation (normalized here to be a probability measure)

was

(38) f(@) =



In this case the resulting aggregate procedure is

(39) dp(t) = — [ ! ]2+ 2 [ ! ]3,

Ca+2b|1+t/a a+2b|1+t/a

which may be interpreted as a weighted average of hyperbolic procedures. Here we find that
a= ﬁ—ﬁ—g; and p(D) = 0 (again, see Appendix for all computations). So this is another example
of a weakly convergent procedure, in this case due to the members of society who do not discount

the future at all (i.e. due to f(0) > 0 in the probability density).

5 Conclusion

This paper proceeds from the observation that economists in a range of specialized fields use
non-exponential discounting functions. Within the exponential framework, alternative discounting
procedures align along the single dimension of discount rate. This simplicity, along with the intu-
itive appeal of the axiomatic formulation of constant rate discounting and the analytic tractability
of the procedure, have ensured its dominance until recently.?’ This paper develops a conceptual
framework for nonconstant rate discounting that arrays procedures along the two dimensions of
amount and speed of discounting, thereby facilitating systematic comparison of procedures and
enhancing their tractability.

A question that is antecedent to discounting in the context of assessing long-term investments,
addressed by Kenneth J. Arrow (1999), concerns the extent to which decisions made today will
have their influence attenuated (or eliminated} by compensatory decisions of subsequent genera-
tions. This issue is very real, and arises also in the design of other sequential decision procedures,
such as foreign aid programs and transfers across levels of government. It has been not our

purpose in this paper to address that issue but, more simply, to improve the tools available in

¥ The axtomatic foundation for constant rate discounting goes back to Tjalling C. Koopmans (1960) who in-
troduced a ‘stationarity’ axiom concerning preferences over time streams of outcomes and established plausible
conditions that require discounting to be exponential. A number of authors have explored weaker axiom systems
that allow representation of intertemporal preferences by a discounting procedure that is not necessarily constant
rate - see Dean T. Jamison (1969), Peter C. Fishburn and Ariel Rubinstein (1982), Han Bleichrodt and Amiram
Gafni (1996) and Han Bleichrodt and Magnus Johannesson {2001}. The simple existence of an axiomatic founda-
tion, therefore, is no argument in favor of constant- over variable-rate discounting; the question is one of assessing

the descriptive, normative, and tractability consequences of adding the strong stationarity axiom.
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circumstances where discounting is being used. Similarly, although we acknowledge the existence
and practical relevance of time-inconsistency issues with regard to variable rate discounting -

initially addressed by Robert H. Strotz (1956) — our focus has been on a different facet of the

problem.

Key results of the paper include:

(i)  precise formulations for concepts of ‘amount’, ‘speed’, and ‘time horizon’ of discounting
procedures;

(ii) proofs of key relations among the concepts of amount, speed, and time horizon;

(iii) descriptions of a range of existing and new discounting procedures and provision of closed
form characterizations relating amount, speed, and time horizon to their underlying parameters;

(iv) identification of inadequacies in existing approaches to aggregating individual discounting
procedures into a socially representative one and formulation of an alternative process — averaging
of normalized discount functions or ANDF — that overcomes these inadequacies; and

(v) proof that under reasonable assumptions the ANDF aggregate procedure will be slower
than the average of the speeds of the individual procedures.

Frederick, Loewenstein and O’Donoghue (2002) and Gretchen B. Chapman (2003) provide
valuable and up-to-date compilations of the empirical literature on time preference and discount-
ing. Newell and Pizer (2000) propose an altogether different empirical approach. Transforming
the empirical literature into discounting procedures for policy application will require two addi-
tional steps. First, to the extent practical, data underlying the reported literature will need to be
characterized in terms of estimates of the amount and speed of individual discounting. Second,
the ANDF aggregation algorithm can be used {through our Proposition 4) to generate candidate
social discounting procedures. We feel that the theoretical approach to discounting that we
propose both undermines many of the practical objections to expanded use of nonconstant rate
procedures and provides a needed framework for integrating and comparing results in the existing

literature.
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6 Appendix

This appendix conveys, first, the proof of Proposition 3 from Section 3.2; second, the proof of
Proposition 6 from Section 4.1; and, third, derivations concerning the aggregation of exponentials

in Section 4.2.
6.1 Proof of Proposition 3

Proposition 3 provides formulas for discount rates, amounts, relative speeds, median time
horizons and mean time horizons for six important discounting procedures. Tables 3a and 3b
convey these results, which are proved below.

6.1.1 Exponential

See the text of Section 3.1.

6.1.2 Augmented exponential

For d(t) = e7 (1 + rs(s — 1)t), we compute

_d'(t)  —e™rs(s—1) —rs(1+7s(s — L)t)] B 5—1
" =-T@ - e + rs(s — 1)t) - (1 1+7s(s — 1)¢)

and
o i o 1 -1 1
/ d(t)ds =f et 4 r(s — 1)/ perstgp = = 4 7= 1
0 0 0

rs (rs)? T
from which e = r as claimed. Meanwhile,
o0 1 2rs(s—1) 2s-—1
;= i+ = = Ty

and # follows directly from the definition. Similarly,

o0 -1 2 2
| A2 _ 5 _ (s —1)
p-_[afo td(t)dt] —28_1-—1+ 21

Finally,

pu(t) = /Ot d(x)dz = % (L—e ™ —r(s — 1)te™™")
and thus pu(t) = pv(c0)/2 = 1/2r when e (1 + r{s — 1)t) = 1/2. Taking logarithms and
inverting, we get that 7 must satisfy 7s7 — In{1 + r(s — 1}7} = In2, and the stated result follows.
We cannot solve explicitly for 7, but it is easy to see that there is a unique value of 7 that satisfies

the equation (for instance, the LHS is 0 at 0 and has a boundedly positive derivative).
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6.1.3 Split rate quasi-hyperbolic

Ifd(t) = e for t <t* and d(t) = Be %t ¢") for t > t* (where 8 = e~"*"), then the discount
rate is immediate (it is in fact the defining characteristic for this procedure), though it is undefined

at t = ¢* where d is not differentiable®. For the amount,

oo t* oo
[ d(t)dt = f e tdt +ﬁ/ et = (1 - gy 4 gL,
Jo 0 ¢ r 8

from which it is clear that the inverse is indeed a [weighted] harmonic mean:

_ TS
C Br+(1=0)s

For the speed, we calculate

o0 t*
[ td(t)ydt = / te "t + / et gt
J0 0

1
; e Tt~ e"”] +ﬁf (t +t")e *dt

= %( tﬁ—6+0+ +ﬁ/ te™*'dt + ft* /Owe""*dt
=%«b-)—tm+ﬁ +pis

1
= E[(l—ﬁ);—t*ﬁs+5;+[3t*r]

so that the relative speed is the inverse of

Bri+ (1 — B)s? + Bt*rs(r — s)
=gt

as claimed. The formula for # also follows from this computation. It is easy to calculate that

a2/ td(t)dt =
J0

p21ass 2r Tofind bounds for p, we first consider s >> r: in this case, p is approximately
f(B) = (1-8)?/(1-B+81n ). The function f is monotonically increasing in 3, with éli%f(ﬁ) =
and ﬁli’l—oml f(B) = 2 (use L’Hopital’s rule twice), so p can get arbitrarily close to 2. On the other
side, for r >> s, p is approximately 8/(1 + st*), which is obviously minimal for 3 near 0 (i.e. 7¢*
very large), and hence p near 0.

For the median time, we need to distinguish two cases: either 7 is smaller than ¢* (in which case
7 occurs while the discount rate is still » and we can use the appropriate expression for pu(t)) or it is

larger than t* (where the rate is s and the expression for pv(t) is different). The boundary case will

101f ¢ > r, say, we can think of 7(¢) as having something like a Dirac delta function spike at ¢°.
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be if v = t*, which occurs exactly when pv(t*) = pv(o0)/2, ie. if 1/r—8/r = [Br + (1 — B)s] /2rs.
This is true if 8r = (1 — B)s (which is intuitively reasonable), i.e. for 8 = e™"" = . Thus
the cutoff value for ¢* is r~!In Z£2. If t* is larger than this (so that 7 is in the initial range),

pv(7) = 1/r —e™"" /r and we need to set this equal to pv(c0)/2 = [Br + (1 — B)s] /2rs. Solving,

1—e7 = lﬁ—T+(1—ﬁ)S —
2 $
L S'ﬁ(T—S) —
2s
2s
I |
T =7 ln—f—s—ﬂ(r—s)‘

If t* is smaller than the cutoff value (so that 7 > t*), then pv(7) = fg e~"tdt + 8 [, et )dt =
(1-B)/r+B(1— e~*"=t")) /s and we solve

1-8 B(l—estt)) 18r+(1—8)s
+ _
T s 2 TS

B,re—s(‘r—t-) = % [ﬁr+ (1 — ﬁ)g] =
efs('r—t‘) Br+ (1 - ﬁ)S

= T
_ * -1 QBT
T = t"+s lnHﬁr+(l—B)s'

6.1.4 Split function quasi-hyperbolic

We now consider the procedure that splits the discount function rather than the discount

e”™t ifE <t
d(t) =

rate;

Ae” it >t
where » > 0 and A < 1. The discount rate for this procedure is constant at r except at t = t",
where it is infinite. If we again denote e™™" by 3, we see that

1-(1—A)8

T

fole] [ <] 1 1
/ d(t)dt = [ e Tt + A [ et = (1— B)= + ALf =
J0O J0 r T

Jee
and the amount of discounting is the inverse of this:

T

1-(1—M\B

o =—
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For the speed,

o0 L fere}
/ td(t)dt te "dt + A / te " tdt
J0 JO t
1 1, 1., 1
= ;((1 —6); —t*8) +/\;(r, B8+ ;/3)

= -804 re)

and so
- =-087
P T a - NEA )

From here, & follows as always. To find bounds on p for this procedure, we first consider the

extreme case A = 0: here p = f(8) = (1-8)%/(1 -8+ 1InB) (same as in the last subsection). So
once more the maximum value for p is 2. Note that if A > 0, then p is maximized at an interior
choice of 3, but the arg max goes to 1 (and the maximum value goes to 2) as A goes to 0. On the
other hand, fixing A and letting 3 go to 1, p is approximately A — so we can make it as small as
we want (greater than 0). Thus the order of limits makes a big difference! Finally, we point out
that for any fixed A, p goes to 1 as 3 goes to 0.

For the median time, we again distinguish two cases: either 7 is smaller than ¢* (and 7 occurs
before the A jump) or it is larger than ¢t* (where the expression for pu(t) is different due to the A
factor). The boundary case will be if 7 = t*, which occurs exactly when pu(t*) = pv(co)/2, i.e. if
1/7 = B/r =[1 — (1 — X)) /2r. This is true when g = 1/(1 + A), i.e. for t* =r~1In(1 + X). If ¢*
is larger than this (so that 7 is in the initial range), pv(7) = 1/7 — ™" /r and we need to set this

equal to pv(co)/2 = [1 — (1 — A)B) /2r. Solving,

—rT 1_(1_A)ﬁ

1—-e = 5
e TT = 1+(1_)\)6
2
r = r~ln 2
B 1+ (1~ X8

If ¢* is smaller than the cutoff value (so that T > £*), then pu(T) = fo e "tdt+f [l Ae " ¢~)dt =
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(1 —8)/r+A(B8—e ™) /r and we solve

1= MB—eT) _ 1-(1-X8

r T 2r
Ag-e) = Lp—a-g) —
e—r'r = Aﬁ +2(i - 6) —
T = p} ln—L.
1-(1-M)8

6.1.5 Hyperbolic

If d(t) = [1 + (1 — s)f] == then

AT S (. i B
(t) ( Lr(l - [1+,~(1 — §)t)7T -1 1 Fr(l—s)t
and
* 1 1 o g
[ o = s -9 =1

and so & = r as claimed. For the speed, we begin by observing that

/Ootd(t)dt— [m t P /m :
70 Jo (14 r(1- syt rP(1=s)?Jo [14qitTs

with the change of variable £ = r(1 — s)¢t. The beta function By, z) can be written

B = [

T

so inserting y = 2 and z = ﬁ — 1= 7% yields

1 s

fom td(t)dt = s B )

But the beta function can be expressed in terms of the gamma function (Gradshteyn and Ryzhik

1980, section 8.38) as

T(y)l'(z)
T(y+2)’
which itself has the property that I'(y+1) = yI'(y). Plugging in (and recalling that I'(n) = (n—1)!

B(y,z) =

for integer n), we find that




Finally,

o= [ot [Cuwa] < [t OS]

as desired. And of course # is then (rs)~!. For the median time, we set pu(T) = pv(co)/2:

1
1-[1 —§)r| T
14 7(l~s)7] 1 -1
T 2r
l+r(l—s)7 = 2! =
21-s 1
T {1 ~s)

Note that, as expected, lirr}'r = r~!In 2 (use L'Hapital’s rule), which is the value for the standard
55—

exponential.

6.1.6 Time-transformed exponential

For d(t) = exp(—rt!/*), we can immediately observe that 7(t) = (r/s)t¥*=!. To calculate
amount and speed, we will use the following formula (Gradshteyn and Ryzhik 1980, section
3.4781):

[000 2¥~Lexp(—r2®)dz = ér_y/"l"(y/z)

with z = 1/s. First substituting y = 1, we find

/’00 d(t)dt = L?‘"”F(s) _sT(s) _T(s+1)
S0 1/3 rs

TS
using the same identity T'(y + 1) = y['(y) as before. The inverse of this is then a, as claimed. To

calculate the speed, we instead substitute y = 2, implying that

s[(2s)
r2s

i 1 o —
/0 td(e)dt = 11 ~T(2s) =

50 that

, [ OS] r2 [[(s) T(s)M(s+1)
P =[°‘2,/0 td(t)dt] = T % s(2s)  CT(2s) | I(2s)

also as claimed. The mean time follows immediately:

e _ I(2s)
8= a/o td(t)dt = T (s)

Unfortunately, there is no closed form integral for d(¢t) and thus no closed form expression for the

median time horizon.

37



We can further investigate several properties of this less well-known discounting procedure.

The binomial coefficient () is by definition

n\ n! _ I'(n+1)

m min—m)! T(m+1I'n-m+1)
and the formulation in terms of gamma functions can be used to define a continuous binomial
coefficient for non-integer n, m. In that case, the relative speed is the inverse of

r(2s) (25 — 1) +1) (23 - 1),

5

T(s)T(s+1) T((2s—1)—s+1T(s+1)

which is strictly increasing in s for s > 0 (since it is an extension of the binomial coefficient).
Thus the relative speed is strictly decreasing in s, and of course it equals (211) =1 when s = 1.
This validates our claim that the transformed time discounting procedure is slow {i.e. p < 1)
exactly when s > 1; and it is fast (p > 1) when s < 1. It also provides a simple way to calculate
p when s is an integer. The claim is also a direct consequence of Theorem 2, once we note that

the derivative of the discount rate has the same sign as 1 — s:
P(t) = (1 — 5)—40/9)-2
52 '

So when s > 1, the discount rate is declining over time (slow discounting), and vice-versa.

Finally, we examine the limit cases for extreme values of 5. As s — o0, d(t) starts to look
almost constant at a value of ™7, so the procedure is less and less convergent (though of course for
any finite s there is no actual problem). This means that a — 0. Since I'(y) grows “factorially”
in y, we find that p goes to ( as well (and 8 grows without bound), which does not automatically
follow from the result for «. That is, the limit discounting procedure is slow even relative to
the equivalent exponential (which has, of course, a zero discount rate in the limit). In the other
extreme, as s — 0, d(t) starts to appear constant at 1 until ¢ = 1, where it precipitously drops to
0. This suggests that « should be near 1, and indeed

0

L]

=1

- _— H — T
o= lin 5 ) T T

since both numerator and denominator are continuous at s = (. For the speed, we make use of

the doubling formula for the gamma function:

22y—1 1
T(2y) = 7 LIy + 5),
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from which we obtain

_T(s+1) 7 T(s+1)
T T(2s) T 22-1T(s+1/2)

and thus (using the known value I'(1/2) = /7)

Vi T{s+1) 7 1
0 TT(s +1/2) _ 201 /&

hmp—ll =2,

again by continuity at s = 0 of all functions involved. This is the “fastest” that we can get with
this type of discounting procedure. Therefore, # approaches 1/2, and it is clear in this case that

T approaches 1/2 as well,

6.2 Proof of Proposition 6

Proposition 6 relates the limiting value of the social discount rate function to the minimum
of the limiting values of the individual discount rate functions. Recall that

() = IX z)d(t;z) f(z)dz
b fx d(t ) f(z)de '

which we can rewrite as a weighted average

= / Bt z)r(t; z)dx
JX

with time-dependent weights 3(¢; z) given by

Bltix) =

Obviously, [, B(t;x)dx =1 for any ¢.
For any ¢ > 0, let us partition X into Aj, Ax(e), and As(e) as follows: 4, = {z € X s.t.

r(z) < i} Asle) = {z € X st vy, S 7(x) < iy, + e} and As(e) = {z e X st g, +

min
e < r*(x)}. Then we can write tll'rgorb—( ) = :,li.IEo [y Brdz = clirgo [, Brdz + tli.rgojAQ(E) frdz +
Jim [y Brde.

For any z with a(z) = 0, B(t;x) = 0 identically. So ignoring any such z and noting that
fA(r;nin) f(x)dz = 0 by definition of 3, we see that [, 8(t;z)dz =0 as well (for all t), since o(z)
and d(t; ) are finite (and o, d, f are all weakly positive). But then tl_l_‘r& Ja, Bt @)r(t z)dz = 0,
so these values of z have no effect on tligxo rp(t). This establishes that tl_l’l'glo T5(t) = Ty it remains

to show that tll'xgo r5(t) < Thin
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Also by definition of 3, _];4(,_;““4_5) f(z)dz > Oforalle > 0. But, as we just saw, [, f(z)dz =
0. Hence, for any e, we can pick zz € Az(e) with a(z3) > 0 and f(z2) > 0; now take any
z3 € As(e). Then

Rewriting d{t; z) as exp (— fot r(T; a:)d’r), we get

B(Eza)  ofws) flxz) eXP( fg T3 &3 dT) B o '
Blt;za)  afzg)f(xe) exp (_.fo T(T;wg)dr) = Mexp (_fo [r(7;23) — r(T; x2)] d’r) ,

where M = 522 f 5 is constant in ¢ (and is finite by the choice of z2). Therefore

) t
zll.ré’ogg’;) Mtl_lixg.oexp (—]0 [r(T;@3) — (T 22)] d‘r) .

But of course zo € As(e) and x3 € As(e) imply that 11m r(t T3) > Toen €2 tlim 7(¢;z2), from
— 00

which it is clear that Jim o lr(m323) — r(7;22)] d7 = 00 and thus

. Bt z3)
‘E'I&ﬂ(t;ﬂf'z)

This implies that, for any x3 € As(e), we must have lllim B(t;z3) = 0. This in turn yields
—oo

= 0.

tl_l'l'élo an(e) B(t;z)dz = 0 (so that ‘l_i'nolo -fAz(E) B(t; x)dxz = 1), but it also implies the stronger con-
clusion that Jim jA () Bt x)r{t; z)dz = 0. Therefore only € As(e) influence lim rﬁ(t), and in
particular llm TD(t) <rs

needed. l

*in T € for any € > 0. But that means exactly that 11m r——(t) < Phiny 88

6.3 Aggregation of Exponentials with Specific Parameter Distributions

We first start with an underlying gamma distribution for the parameter of individual expo-

nential discount functions:

ab

flz) = m
where z € (0, 00) denotes the discount rate parameter in a standard exponential, and a,& > 0.

Thus az) = 2, d(¢;x) = e~ and f(z) is as above. Then

o0 at e (ot g a® T(B+1) _b| a bl
/0 a(ﬂi)d(t:ﬂ:)f(w)dﬂ:f@_/o mbe(+)d$_m(a+t)b_+l_a{a+t] ‘

—asz—l,
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But

S R Coah e, a® T+ b
a_./o a(:n)f(z:)da:-m-/[; ale dw_l"—(bj__ab*“l—“a'

so dp(t) = (1+ t/a]_(l‘”’) as claimed. The relative speed follows from Theorem 3 with r = b/a
and s =1 —1/b.
Next, in order to allow for a positive weight at 0, we consider an augmented exponential as
the underlying distribution on the parameter:
o2
f(z)= me_”(l + bx).

We have a(z) = z and d(t;z) = ¢ ** as before, so

oc 2 oo
./(; a(z)d(t;2) f(z)dz = a(J:{—bfo ze~(+9%(1 4 br)dz

_ a® 1 + 2b
T oa+b|(a+t)?  (at+t)
a? [a+2b+t]

a+b| (a+t)®
and
_ [ a® [* a® [1 2] a+2b
a:fo a(x)f(x)dx=a+bf ze (1+bz:)d:r—a+b|:a2 3 2@t b
Thus
ad [a+2b+t
dplt) = a+2b\:(a+t)3]

- (1+a:2b) [ait]a 3
- [afzb(l“/“) * (1 B abe)] [1 +1t/a]

a 1 2+ 2b 1 ]3
a+2b|1+t/a a+2b|1+tfa] ’

as claimed. Finally, the first of these weighted hyperbolics is [just barely] weakly convergent, with

r = 1/a and s = 0, so the overall procedure will have # = oo and p = 0.
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