Cooking Outdoors: A Safer Alternative

Sam Bentson, Kelley Grabow, Dean Still, and Ryan Thompson

Aprovecho Research Center

Introduction

- What is indoor air pollution (IAP)?
- How do stoves
 affect IAP?

•Why is indoor cooking a problem?

1,500,000 deaths per year¹

1. http://www.who.int/indoorair/publications/nationalburden/en/index.html

Background

- WHO standards updated in 2010
- Johnson, Monte Carlo box model
- Smith, RESPIRE study
- Seen in literature:
 - "[IAQ] ranks second only to poor water/sanitation/hygiene among environmental health risk factors."¹
 - "Improved ventilation of the cooking and living area can contribute significantly to reducing exposure to smoke."²
 - But also: "The largest reductions in indoor air pollution can be achieved by switching from solid fuels (biomass, coal) to cleaner and more efficient fuels..."²

- 1. Naeher, L. P., Smith, K. R., et al., Critical Review of the Health Effects of Woodsmoke, 2005.
- 2. http://www.who.int/indoorair/interventions/en/, accessed 25 January, 2011.

Project Objectives

• Goal:

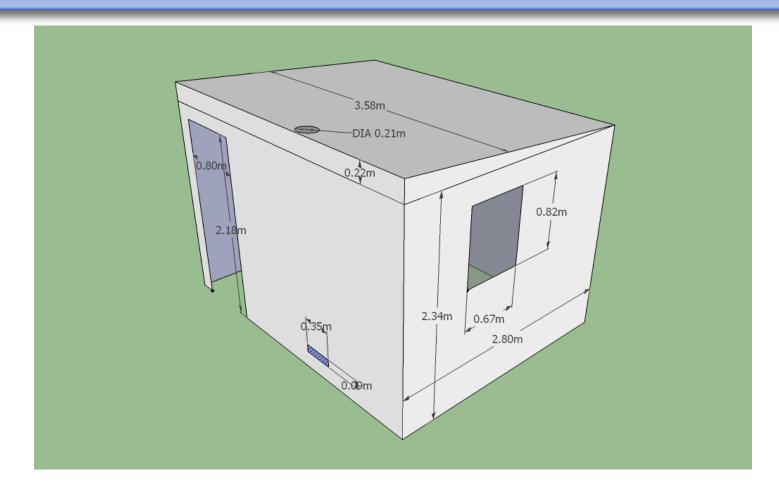
- Compare emissions of traditional & improved biomass stoves, both inside & outside
- Show basic methods of reducing emissions exposure

Project Objectives

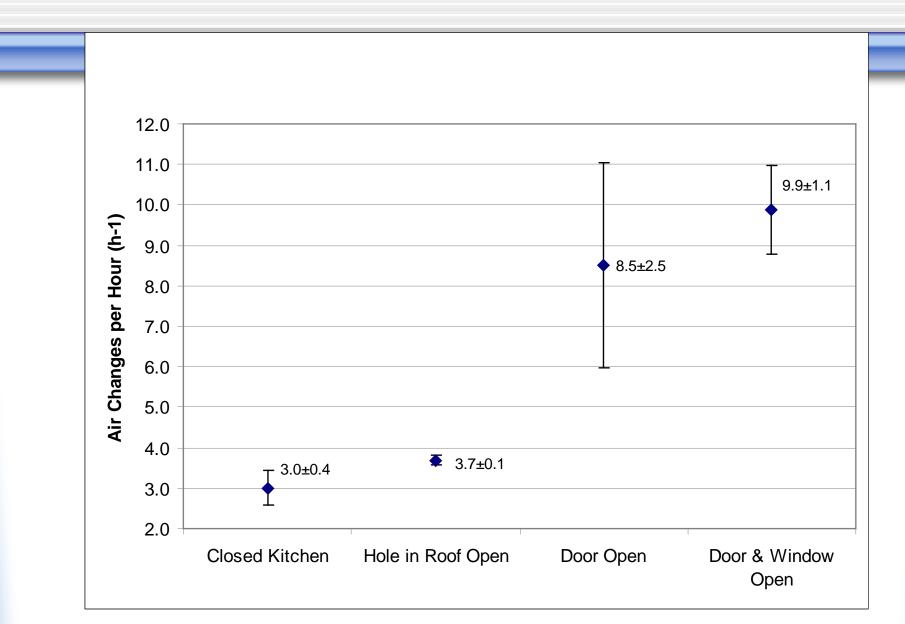
- Why?
- Get solid scientific support
 - Cooking location recommendations
 - Funding projects
- Demonstrate use of IAP in field

Methodology

- IAP meter
- Technical specifications
 - CO detector
 - PM detector



Methodology


- Written protocol
 - Based on typical cooking task
 - Collect data for 60 minutes
- Experimental setup
 - Test kitchen volume ~10 m³
 - IAP monitor ~1 m horizontally and ~1 m vertically from stove center
 - Open fire

TLUD

Experimental

Results

Findings

Indoor performance Open fire

TLUD

Stove	Measurement	Units	Estimated mean	nt value * estimated standard
				deviation of the mean
3 Stone Fire Inside	Average PM concentration	ug/m3	11664.7	5760.4
TLUD Inside	Average PM concentration	ug/m3	1848.6	643.4
3 Stone Fire Inside	Average CO concentration	ppm	85.9	36.9
TLUD Inside	Average CO concentration	ppm	17.6	13.6

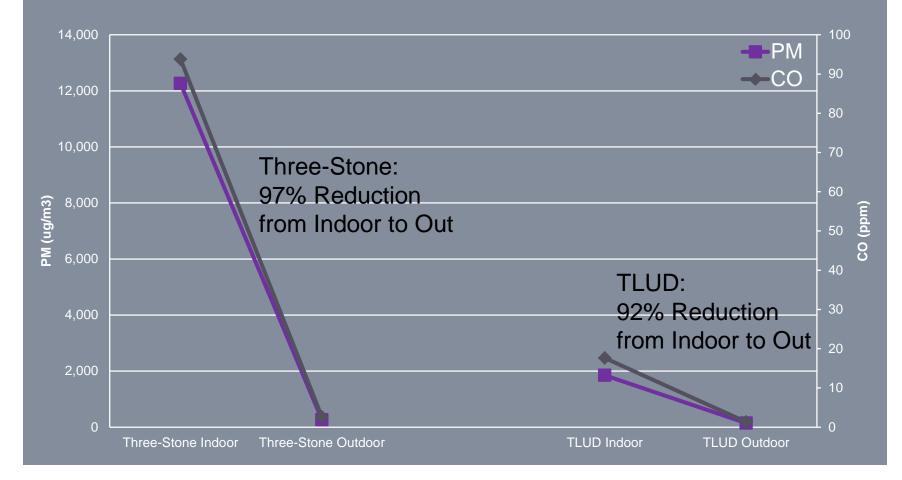
Findings

Outdoor performance Open fire

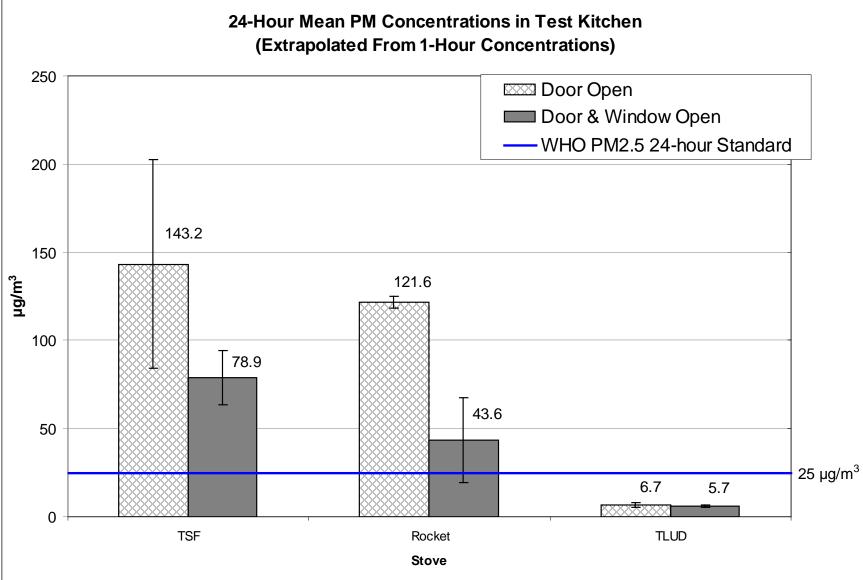
TLUD

Measurement	Units	Estimated mean	t value * estimated standard	
			deviation of the mean	
Average PM concentration	ug/m3	261.9	6.80E-08	
Average PM concentration	ug/m3	170.5	267.1	
Average CO concentration	ppm	2.6	4.30E-10	
Average CO concentration	ppm	1.5	2.8	

More detailed information about how data were processed may be seen on the penultimate slide "Data Processing".


س_6_ 0 -3 Stone Fire Inside 3 Stone Fire Outside TLUD Inside **TLUD** Outside

Estimated Mean Particulate Matter Concentration


140 120 100 80 mdd 60 40 20 0 3 Stone Fire Outside 3 Stone Fire Inside TLUD Inside **TLUD** Outside

Estimated Mean Carbon Monoxide Concentration

Emissions Exposure as Measured by IAP Meter Backpack Outdoors and Indoors for Three-Stone Fire and TLUD

Results

Results

Conclusions and Discussion

- Improvement of TLUD over open fire
- What was statistically significant?
- What was not statistically significant?
- Why is that important?

Recommendations

- Is it better to cook outdoors on a traditional fire, or to cook on a TLUD, in terms of:
 - Health?
 - Deforestation?
 - Climate change?

Issues yet to be addressed

• Will more stoves be tested?

What if a cook cannot cook outside?

• What about outdoor air pollution?

Looking forward

- Continue testing
- Key points to remember for future
 - Emissions
 - Ventilation
 - Location
 - Stove
 - End user

Sources Referenced and Cited

- Aprovecho Research Center, Shell Foundation, et al. Comparing Cook Stoves.
- Dasgupta, S., Huq, M., et al. Indoor Air Quality for Poor Families: New Evidence from Bangladesh. Development Research Group, World Bank Policy Research Working Paper 3393, 2004.
- Desai, M. A., Mehta, S., & Smith, K. R. Indoor smoke from solid fuels: assessing the environmental burden of disease at national and local levels. Geneva, WHO, 2004.
- Figliola, R. S., et al. *Theory and Design for Mechanical Measurement*, Wiley, 2006.
- Naeher, L. P., Smith, K. R., et al. *Critical Review of the Health Effects of Woodsmoke*, 2005.
- Rubinson, K. A., & Rubinson, J. F. *Contemporary Instrumental Analysis*, Prentice Hall, 2000.

Data Processing

Error Analysis

- Standard format
 - True mean (μ)
 - Estimated mean (m)
 - Estimated standard deviation of mean (s_m)
 - Student's t at 95% (t_(N-1,95))
- Reporting and display
 - $\mu = m \pm t_{(N-1,95)} \cdot s_m$
 - Bar graphs display m
 - Error bars display ± t_(N-1,95)•s_m

Acknowledgements

Thanks to:

Dean Still, Sam Bentson, Ryan Thompson, Karl Walters, Nordica Hutchinson, and all Aprovecho staff and volunteers

