Session II – HAP Training Institute Exposure Assessment

Patrick N. Breysse

AGENDA

- Presentation Principles of Exposure Assessment
- Equipment demonstration
 - Station 1 Real-time particulate matter sampling
 - Station 2 Integrated particulate matter sampling
 - Station 3 Carbon monoxide sampling and carboxyhemoglobin assessment
 - Station 4 Particulate matter composition assessment

Faculty

- Johns Hopkins University Bloomberg School of Public Health
 - Patrick N. Breysse, PhD, CIH
 - D'Ann Williams, DrPH
 - Jana Mihalic, MS
- Columbia University Mailman School of Public Health
 - Patrick Kinney, ScD
 - Darby Jack, PhD
- Columbia University Lamont-Doherty Earth Observatory
 - Steve Chillrud, PhD

Principles of Exposure Assessment

Exposure Assessment Concepts

- Exposure
 - Contact between an agent and a target (person)
- Exposure Assessment
 - The process of estimating or measuring the magnitude, frequency and duration of exposure to an agent
 - The number and characteristics of the population
 - Describes the sources, pathways, routes, and the uncertainties in the assessment

Concepts

Exposure --> Intake/Uptake --> Dose

- Exposure
 - Contact between an agent and a person
- Intake/Uptake
 - Physically moving the chemical in question through an opening in the outer boundary (usually the mouth or nose)
 i.e. inhalation
- Dose (absorbed dose)
 - Amount of material that is taken up into the body
 - Mass or mass per unit body weight (ug/kg)

Exposure Assessment Approaches

- Direct methods
 - More accurate
 - More expensive and time consuming
 - More burdensome
- Indirect methods
 - Inexpensive
 - Easy to implement for large studies
 - Can be either qualitative, semi-quantitative, or quantitative
- Exposure models
 - Hybrid approach

Types of Samples

- Personal Sampling
 - Worn by the person
 - Integrates exposure over time and space as the person moves
 - Equipment needs to be small, lightweight, battery operated
- Area or fixed location sampling
 - Integrates exposure over time in a single location
 - Does not need to be as small and lightweight as personal samplers
 - Does not need to be battery operated

Active Sampling

- Pump + collection media
- Determine average exposure over the collection time
- Requires measurement of mass of contaminant collected and the volume of air it came from

Particulate matter filter-based sampling gravimetric or chemical analysis

Gas and vapor sorbent tube sampling with chemical analysis

Passive Sampling

- Relies on diffusion (no pump)
- Used mostly for gases and vapors
- Requires chemical analysis

Direct Reading Instruments

- Collect samples and perform analysis in the same instrument
 - Generally more expensive
 - Can operate either actively (i.e., with a pump) or passively
 - No analytical cost
 - Requires calibration
 - Special quality control issues
 - Provides time-resolved data

Optical Methods for Particle Detection

• Personal or area monitoring

Importance of Particle Size

Aerodynamic diameter (µm)

Particle Size Sampling Conventions

- Environmental Protection Agency
 - PM₁₀ Particles less than
 10 μm in diameter
 - PM_{2.5} Particles less than
 2.5 μm in diameter
 - Fine PM
 - PM_{2.5-10} Particles
 between 2.5 -10 μm in
 diameter
 - Coarse PM

- Occupational Conventions
 - Inhalable dust
 - Thoracic dust
 - Respirable dust

Biomarker Paradigm

Cook Stove Household Air Pollution

- Incomplete combustion of biomass fuels produces a complex, highly variable pollutant mixture
 - Particles of varying sizes and composition
 - Gases
 - Carbon monoxide
 - Oxides of nitrogen
 - Formaldehyde

- Volatile and semi-volatile organic compounds

Household Air Pollution Related to Solid Fuel Use and Health: The Need for Improved Exposure Assessment

- May 2011 international workshop
 - Led by the NIH
 - -> 150 participants to review the state of the science regarding the health impacts of exposures to household air pollution
- This paper is the product of the exposure assessment and biomarkers (EAB) working group
 - Currently in final draft stage

Exposure Assessment Approaches

- Qualitative
 - Fuel type/Stove type
- Semi-quantitative
 - Fuel type/Stove type with additional measures
 - e.g. time-activity, cooking behavior, fuel quality, stove condition, and ventilation
- Indirect quantitative measures
 - Area/kitchen pollutant concentrations
 - Area/kitchen pollutant concentrations with additional semiquantitative measures
 - Time-activity, cooking behavior, other pollutant sources
- Direct measures
 - Personal exposures
 - Biomarkers of exposure
- Hybrid model approach
 - Combined area/kitchen and personal pollutant concentrations

Biomarkers

- Exhaled carbon monoxide or carboxyhemoglobin
- Hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs)
 - Most commonly used
 - Not unique to biomass
- Methoxyphenols and levoglucosan
 - Associated with wood smoke exposure
- More studies are necessary to determine the correlations between biomarkers of exposure and measured personal exposure concentrations
 - Adults versus children

Exposure Assessment Challenges

- Previous cook stove studies relied heavily on qualitative and semi-quantitative indirect exposure assessments
 - Documented the wide range of significant health impacts
 - Documented the need to intervene
 - Failed to answer the question
 - "How clean is clean enough?"
 - There is a critical need to characterize exposure response relationships in order to implement evidence-based interventions

Exposure Assessment Challenges

- Air sampling equipment commercially available was developed for measuring ambient air pollution
 - Where exposures are orders of magnitude lower than in cook stove settings
- Few large scale health effects studies have invested the resources needed to conduct detailed quantitative direct or indirect exposure assessments
 - Greater investment in exposure assessment is needed

Indoor Particulate Matter (PM_{2.5}) and Carbon Monoxide Concentrations in Peru

Exposure Assessment Challenges

- Cook stoves and open fires are small in scale but high in emission intensity, they create steep spatial concentration gradients that are difficult to characterize
- Considerable uncertainty regarding the nature and magnitude of exposure variability
 - Multiple sources of exposure measurement error currently lead to considerable uncertainty around the exposure-response curve
 - Limiting our ability to estimate health benefits from proposed exposure reductions

Orientation Particulate Matter Concentration

90 ug/m³

12 ug/m³

Indoor air in Peru 2,000 – 3,000 ug/m³

London smog 1952 1,000 – 2,000 ug/m³

4 Breakout Groups

- Station 1 Real-time particulate matter sampling
- Station 2 Integrated particulate matter sampling
- Station 3 Carbon monoxide sampling and carboxyhemoglobin assessment
- Station 4 Particulate matter composition assessment